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Abstract

This study yielded a mathematical expression to calculate the pressure gradient (DP/L)m of the flow of a spherical
capsule train. An experimental investigation was carried out to determine pressure drops of two-phase mixture flow of
spherical ice capsules and water inside the pipelines of cooling systems. Instead of ice capsules, spherical capsules made
of polypropylene material whose density (870 kg/m3) is similar to that of ice were used in the experiments. Flow behavior
of the spherical capsules, 0.08 m outer diameter, was observed in the measuring section inside plexiglass pipes, 0.1 m inner
diameter (ID) and 6 m in length; pressure drops were measured on the 4 m section. The investigation was carried out in the
1.2 · 104 < Re < 1.5 · 105 range and under transport concentration (Ctr) by 5–30%. Dimensionless numbers of the physical
event were found out by conducting a dimensional analysis, so that mixture density was expressed in terms of specific grav-
ity and in situ concentration. After arriving at certain conclusions based on the relevant experimental findings and obser-
vations, empirical and mathematical models which can be used for calculation of the pressure gradient were developed.
Comparison of the mathematical model with the experimental findings revealed that pressure drop values deviated by
2.7% on average for 2.5 · 104 < Re < 1.5 · 105.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Utilization of spherical ice capsules in cooling systems is still relatively new method. Since the latent heat of
ice is very high, the same mass discharge provides more cooling, or the cooling process is ensured to be more
economical on the grounds that less mass discharge and pipes smaller in diameter are required. Utilization of
spherical ice capsules which occupy 80–90% of pipe’s diameter will be an innovation in cooling technology and
bring various advantages.
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• Since ice capsules are large in terms of dimension, they will be able to stay without melting within the sys-
tem for a longer time. Melting will be even slower if capsules are put in a plastic casing. Such plastic casing
will prevent adhesion and clustering behavior of granulated ice flow.

• Ice concentration values and ice capsule velocity values reached during the flow are much higher than con-
centration and bulk velocity values reached during ice–water slurry flow. Therefore, the cooling capacity of
the district system will increase.

• Since pipelines used for heating purposes will be used for cooling in the summer, no new investment will be
required. Pipelines installed to carry water can be used for flows of an ice and water mixture, so that water
and cooling demands will be met together.

• Since the capsule flow will be a single mass movement, blocking problems arising from dispersion of par-
ticles in ice–water slurry flows will be prevented. Particles will neither disperse nor accumulate at low veloc-
ities, so that it will not be necessary to set a critic velocity limit for capsule flows.

• The spherical form of capsules prevents blocking of pipe joints and ensures local losses to be minimized.

Flow parameters and flow patterns concerning utilization of a granulated ice–water or snow–water mixture
in cooling systems have been examined by various authors (Kawada et al., 1998, 1999; Snoek et al., 1993;
Takahashi et al., 1991). The diameter of the ice particles was maximum 12 mm, and ice concentration did
not exceed 25%. However, capsule flow can ensure a maximum ice concentration by approximately 43% when
the diameter ratio (k = d/D) is 0.8. Kawada et al. (1999), has reported potential blocking problems in the flow
of ice–water slurry. In ice–water slurry flows, the fact that ice particles tend to cluster especially at low veloc-
ities and proceed in the form of bed flows contacting the upper wall of pipes at a high rate increases the
pressure gradient. Therefore it is needed to operate at bulk velocities that minimize the pressure gradient
for slurry flows. The fact that particles within ice-slurry flows tend to disperse or accumulate in pipeline joints
causes various blocking problems to arise and excessive pressure drops to happen. However, such problems do
not arise in capsule flows. Empirical expressions obtained from studies conducted on granulated ice–water or
snow–water mixtures used in cooling systems cannot be used for capsule flows, because the former’s slurry
flow mechanism and effective parameters are different from those of the latter. Utilization of spherical ice cap-
sules in cooling systems is in its early stages, having different flow parameters than of ice–water slurry flow.

In designing capsule train pipelines, a general model is needed to calculate pressure gradients. A generalized
mathematical model is needed to calculate pressure drops which can occur with different types of capsules or
pipe geometries and energy requirements depending on the pressure drops. If the energy loss of a certain pipe-
line is known, it will be used as a criterion to select a proper type of pump and the number of pump stations.
The effect of variables which characterize the event on pressure drops is defined by using such mathematical
model, so that it will be possible to find out the most economical pipe geometry, capsule to pipe diameter ratio,
or velocity of flow which minimizes pressure drops. Before creating such model, the physical mechanism of the
capsule-water flow must be defined well, and physical magnitudes that characterize the event and their effect
on pressure drops and velocities must be determined. Another important requirement is to verify the mathe-
matical model by conducting experiments.

This study was conducted to develop empirical and mathematical models for the calculation of pressure
gradients of a spherical capsule train whose density is close to that of ice, flowing inside horizontal and straight
pipes.

2. Literature review

Numerous experimental investigations were conducted on hydraulics conveyed in capsule pipelines
(Table 1). The starting point for the investigations was to find out how to convey products (or materials) along
long distances in the most economical way. Investigations started in the 1960s focused on conveyed materials
whose densities were higher than or the same as the carrier liquid. Until the first half of the 1970s, studies
focused on characteristics of the flow behaviors of single cylindrical capsules (with flat or rounded ends) or
of spherical capsules placed in circular sectioned vertical or mostly horizontal pipes. The studies were limited
with dispersion of the forces affecting the capsule’s surface and with measurement of velocities of capsule-car-
rier liquid (Ellis, 1964a,b; Ellis and Bolt, 1964; Round and Bolt, 1965). In the second half of the 1970s, studies



Table 1
Pressure gradient expressions developed for different flow conditions

Author Year Number
of capsule

Shape of
capsule

Pipe geometry Pressure gradient expressions

Latto et al. 1973 Single Spherical Vertical DP m�DP w

ðqc�qwÞD ¼
2
3

d
D

� �3

Latto et al. 1973 Single Spherical Inclination DP m�DP w

ðqc�qwÞD sin h ¼ 2
3

d
D

� �3

Kruyer–Ellis 1974 Single Cylindrical Horizontal Rec ¼ ðD� dÞðV b � kV cÞ=ð1� k2Þt for Rec 6 1000
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� �
m
¼ 19:2ðV b�kV cÞqwt
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Latto–Lee 1978 Single Cylindrical Vertical DP m�DP w

½ðqc�qwÞgD� ¼ d
D

� �3 l
d

� �
(l length of cylindrical capsule)

Kroonenberg 1978 Single Cylindrical Horizontal DP
L

� �
m
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D
1
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Govier–Aziz 1972 Train Spherical Horizontal DP
L

� �
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¼ 2f qmV 2

b

D (f, friction coefficient–Fanning)

Ellis et al. 1975 Train Spherical Horizontal DP
L

� �
m
¼ Aþ B DP

L

� �
w

h i
k2 (A, B experimental constants depending

on diameters of pipe and capsule)

Chow 1979 Train Spherical Vertical DP m�DP w

ðqc�qwÞD
¼ 0:79 d

D

� �3:572
m1:003 (m, the number of capsules in train)

Agarwal–Mishra 1998 Train Spherical Horizontal k = 4(a + bRe�c), k = 4f

a = 0.26(ep/D)0.225 + 0.133(ep/D)

b = 22(ep/D)0.44, c = 1.62(ep/D)0.134

DP
L

� �
m
¼ 2f qmV 2

b

D

Govier–Aziz 1972 Train Cylindrical Inclination DP
L

� �
m
¼ w DP

L

� �
w
þ fk2 qm�1

qm
ð1� CLÞ cos h (w coefficient depending

on flow regime, CL buoyancy coefficient)
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were directed to capsule trains. However, the number of the capsules that formed the train was limited in the
studies (Ellis and Kruyer, 1974; Ellis et al., 1975) Early studies conducted to find out both the flow mechanism
of a single capsule and the behavior of a capsule train had used a capsule (or a capsule train) fixed or
suspended inside a pipe for liquid flow. In a study conducted on hydrodynamics of moving capsules, Vlasak
(1999) used capsules in anomalous shapes (i.e. cylindrical capsules with helical grooves carved on them) and
having densities higher than that of the carrier liquid, and set up a special delivery mechanism to ensure the
capsule train to be continuously moving within the system.

To date no mathematical model has been developed to calculate pressure drops in the flow of a spherical
capsule train whose density is less than that of the carrier liquid inside horizontal pipes. Some of the empirical
expressions presented in the experimental studies conducted to date involve capsule flows inside vertical pipes
(Latto et al., 1973; Latto and Lee, 1978; Chow, 1979). Flow in a vertical pipe is different from flow in a hor-
izontal pipe. Movement of capsules in a vertical pipe represents only the carriage movement exerted by water
on them. Unlike movement in a horizontal pipe, neither a rolling movement (if the capsule is spherical) nor
any surface friction losses occur. Therefore, empirical expressions developed for pressure drops in the flow of
capsules in a vertical pipe cannot be used for capsule flows in a horizontal pipe.

In general, a single or cylindrical capsule was selected for the studies conducted on capsules flowing in a
horizontal pipe (Kruyer and Ellis, 1974). In developing a model for a single cylindrical capsule whose density
was higher than that of the carrier liquid, the capsule was allowed to occupy a long portion of the pipe and the
end effects were ignored (Kroonenberg, 1978). Expressions developed for pressure drops in single capsule
flows or in cylindrical capsule flows do not calculate pressure drops in flows of a spherical capsule train.

It was assumed in the studies conducted on cylindrical or spherical capsule trains that the capsules proceed
in a concentric position (where the capsule and pipe axes overlap) and that the capsules contact each other.
Flow of the capsule and carrier liquid mixture was considered a single-phase homogenous flow, so that losses
caused by the rolling movement were ignored especially in spherical capsules (Govier and Aziz, 1972; Agarwal
and Mishra, 1998). In fact, the capsule movement mechanism mostly consists of rolling and rolling + sliding
(flowing), therefore a general model must contain the losses caused by rolling movement.
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For this study, experimental equipment similar to a capsule pipeline was installed. Spherical capsules made
of polypropylene material whose density (870 kg/m3) is similar to that of ice were used in the experiments.
Flow behavior of the spherical capsules, 0.08 m outer diameter, was observed in the measuring section inside
plexiglass pipes (ID 0.1 m). In developing a model, the flow mechanism of a spherical capsule train whose den-
sity is less than that of water was taken as a basis. Distance between the capsules, roughness of the capsule and
pipe surfaces, and frictional losses caused by the rolling movement of the spherical capsules were taken into
account in developing a mathematical model for pressure drops.

Previous studies conducted by this author had developed methods to measure actual velocity of the cap-
sules, distance between the capsules, and concentration of the capsules (Ulusarslan, 2003; Ulusarslan and
Teke, 2005). This paper contains a brief summary of the previous studies and a dimensional analysis, and
explains the conclusions arrived with reference to the relevant findings and how to determine the density of
the mixture. This paper also develops empirical and mathematical expressions based on experimental findings,
and explains the deviations between the experimental findings and models.

3. Dimensional analysis

Buckingham’s p method was used for dimensional analysis. Independent variable parameters of the system
are capsule velocity (Vc), capsule diameter (d), capsule density (qc), the mean distance between capsules (lc),
pipe diameter (D), the density of carrier liquid (qw), dynamic viscosity of carrier liquid (lw), and the average
velocity of capsule and carrier liquid flowing together (bulk velocity) (Vb). L refers to the length of the pipe in
the measuring line; the pressure drop of the mixture per unit length (pressure gradient) depends on the inde-
pendent variables of the system.
V c or
DP
L

� �
m

¼ f ðV b;D; d; qc; qw; lw; lc; gÞ ð1Þ
seven dimensionless numbers are obtained from the physical event expressed in terms of three basic dimen-
sions (mass, length, time) and composed of eight independent variables. The velocity ratio (Rv = Vc/Vb) or
the dimensionless pressure gradient can be written with reference to the literature (Ellis, 1964a; Round and
Bolt, 1965; Vlasak, 1999) as a function of those five dimensionless numbers.
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D
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In accordance with the results of the dimensional analysis, the dimensionless numbers of the system were

written as an expression of the dimensionless pressure gradient
V 2

b
qw

D
DP
L

� ��1

m

� �
or as a function of the velocity

ratio (Rv = Vc/Vb). Dimensionless numbers are diameter ratio (k = d/D), the specific gravity of the capsule
(s = qc/qw), Re number (Re = Vb qw D/lw), the Froude number of the capsule ðFr ¼ V 2

b=gdÞ and the expres-
sion that yields in situ concentration (d/lc) (Fig. 1), which describes the part of the pipe occupied by the cap-
sule. In situ concentration is relative linear filling of the capsules in the train, but only in longitudinal
Fig. 1. Schematic diagram of distance between capsules.
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dimension. The dimensionless number of (d/lc) expresses the in situ concentration. The volumetric in situ con-
centration was found out to be:
Fig. 2.
pipe, g
o – Se
Cin situ ¼
2

3
k2 d

lc

ð4Þ
Diameter ratio (k = 0.8) and the specific gravity of the capsule (s = 0.87) are constant in the experiments. Rel-
ative surface roughness of pipe and capsules are zero (ec/d = 0, ep/D = 0). Investigations carried out by using
spherical capsules in equal density reported that the influence of the Froude number is negligible (Ellis and
Bolt, 1964). The density of the spheres used in this investigation’s system was near to that of water. Therefore,
the Froude number was not taken into account for calculations. In this case, the velocity ratio and the dimen-
sionless pressure gradient are expressed as a function of the Re number and the capsule concentration.
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4. Experimental equipment and procedures

An experimental set-up, similar to actual capsule pipelines, was created (Ulusarslan, 2003). A schematic
diagram of the experimental set-up is shown in Fig. 2.

Water is pumped from the tank to the system by a scroll type of pump having a horizontal shaft and a
power output of 7.5 kW. The flow rate of the water in the system was regulated through a valve connected
Schematic diagram of the experimental set-up; a – Tank, b – Flow meters, c – By-pass line, d – Pump, e – Pressurized pipe, f – PVC
– Reverse reduction, h – Y branch, I – PVC pipe, j – Plexiglass pipe, k – Sensors, l – Sieve, m – Capsule feeding pipe, n – Elevator,

nsor, p – Transmitter.
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to the pump outlet and the amount of flow rate was measured by water flow meters having an average var-
iation of 0.5% (max. 1%) from the actual values.

The capsules were fed into the system through a 3 m. long, 16-bucket elevator. The capsule concentration in
the system was controlled by regulating the elevator speed with a driver. The number of capsules (N) released
into the system per unit time was determined by considering the driver speed (rpm) with the help of a fiber
optic sensor located on the elevator.

The test section was formed by means of horizontal plexiglass pipes 6 m long, 0.1 m inner diameter. Pres-
sure drop measurements were carried out on the 4 m section of the plexiglass pipe. Two pressure taps were
connected through piezometric hoses to the ends of a differential pressure transmitter used for measuring pres-
sure drops with a distance (L) of 4 m between them. The transmitter was able to measure pressure changes at a
range of 0–10 kPa with an accuracy of 0.5%.

Two fiber optic sensors were installed on the measuring section with a distance of 0.1 m between them. Sig-
nals transmitted from the printed circuit board to the computer were determined by means of special software
to calculate capsule velocities, the number of capsules that would constitute in situ and transport concentra-
tions, and the distance between the capsules.

Analog output (0–10 V) coming from the transmitter and from the sensors of the measuring section were
converted into digital data through an industrial automation printed circuit board installed in the computer
and an automation program set for the test strategy. A graphic of the original signals obtained from the trans-
mitter and the sensors is shown in Fig. 3.

Capsules passing through the measuring section were re-fed into the system through a sieve installed on the
tank to ensure the continuous flow of the capsule train. Capsules comprising the train were rigid, in spherical
shape, with a specific gravity of 0.87 and a diameter ratio of 0.8. The temperature of the water circulating
within the system during the tests was 20 ± 2 �C. Pressure drops were measured at the 1.2 · 104 <
Re < 1.5 · 105 range and under transport concentrations of 5–30%.
5. Experimental parameters

5.1. Capsule concentration

Volumetric capsule concentration can be determined in terms of transport concentration and in situ con-
centration (Ulusarslan, 2003; Ulusarslan and Teke, 2005, 2006). Transport concentration is defined as the
ratio of the volumetric flow rate of the solid materials moving in the system to the total flow rate.
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Ctr ¼
Qc

Qw þ Qc

¼
pd3

6

� �
N

Qw þ pd3

6

� �
N

ð8Þ
Volumetric flow rate of the water measured by the water meters is Qw; volumetric flow rate of the capsules in
the pipeline is Qc. The number of the capsules fed to the pipeline per unit time is N, as calculated by evaluating
the sensors’ signals. The change of N determines transport concentration at different values of the volumetric
water flow rate.

In situ concentration refers to the ratio of the capsule volume to the total volume in the pipe, which was 1 m
long. Results of the test indicate that the flow velocities of the phases are very close to each other.
Ctr ¼ Cin situRv ð9Þ
Therefore, in situ concentration was considered to be equal to transport concentration; Ctr was used instead of
Cin situ in the graphics.

5.2. Bulk velocity

The mean velocity reached while the capsules and water flow together yields bulk velocity, which was
expressed as follows. A shown in Eq. (10) refers to the cross section of the pipe in the measuring section.
V b ¼
Qw þ Qc

A
ð10Þ
5.3. Velocity ratio (Rv)

When the ratio of capsule velocity to bulk velocity is defined as the velocity ratio:
Rv ¼
V c

V b

ð11Þ
Vc, is the actual velocity of the capsule flowing with water, found by evaluating the sensor signals transmitted
to the computer.

5.4. Pressure gradient ratio (Rp)

It is defined as the ratio of pressure gradient occurring in the two-phase mixture flow (capsule train and
water) to the pressure gradient occurring in the single-phase water flow.
Rp ¼
ðDP=LÞm
ðDP=LÞw

ð12Þ
5.5. Density of mixture

The increase of (DP)m changes in proportion with square of velocity and with density. The density of the
mixture was calculated by dividing the total mass of the pipe in length L by the total volume of the same, and
the product was used as the density value. Where the number of capsules in a pipe in length L (1 m) is Nin situ,
the density of the mixture can be determined as
qm ¼
pD2

4
L� pd3

6
N in situ

� �
qw þ pd3

6
N in situqc

pD2

4
L

ð13Þ
Since Nin situ = L/lc and s = qc/qw, Eq. (13) can be simplified to determine the density of the mixture as
follows:
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qm ¼
qw

L
lc

pD2

4
lc �

pd3

6
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qw

� �
pD2

4
L

ð14Þ

qm ¼ qw 1þ 2

3
k2 d

lc

ðs� 1Þ
	 


ð15Þ
lc = d is the limit value of this study. When assuming that the capsules contact each other, lc = d. Eq. (15) is
arranged as follows:
qm1 ¼ qw 1þ 2

3
k2ðs� 1Þ

	 

ð16Þ
If the density of the mixture is expressed for in situ concentration:
Cin situ ¼
pd3

6
N in situ

pD2

4
L

ð17Þ

Cin situ ¼
2

3
k2 d

lc

ð18Þ
where Cin situ is expressed as follows when it is added to Eq. (15):
qm ¼ qw½1þ Cin situðs� 1Þ� ð19Þ
Average distances (lc) between the capsules were measured by using the sensors installed on the experimental
equipment and making a photographic investigation (Fig. 4) (see Table 2) (Ulusarslan and Teke, 2005). The lc
Fig. 4. Flow photograph: (a) Ctr = 25%, Nin situ = 7.022 capsules and (b) Ctr = 30%, Nin situ = 8.349 capsules.

2
ies of mixture calculated by means of Eq. (15)

lc (m) (experimental average
value of capsule distance)

qm (kg/m3) Cin situ lc (m) (experimental average
value of capsule distance)

qm (kg/m3)

0.77 994.24 0.20 0.186 976.14
0.378 988.26 0.25 0.142 968.75
0.257 982.73 0.30 0.12 963.02
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values were added to Eq. (15) to calculate the mixture’s density individually for each concentration. Thus mix-
ture densities depending on experimental findings were calculated.

6. Capsule flow mechanism

Since the pipe was horizontal and the density of the capsules was lower than that of the water used as car-
rier liquid, the capsules proceeded with a rolling motion on the upper surface of the pipe due to the buoyancy
of the water. As the mixture’s velocity increased, so did the velocity of the capsules; the capsules were observed
to slightly jump towards the axis. The reason of the jumps is that as the velocity of the mixture increases, the
rolling velocity of the spherical capsules increases too, causing the turbulence strength of the water surround-
ing the spherical capsules to increase, and causing the spherical capsules to move away from the upper surface
of the pipe (Magnus Effect) (Ellis, 1964b). This mechanism causes frictional forces to decrease and the spher-
ical capsules to tend to slip. In high mixture velocities and capsule concentrations, the spherical capsule train is
expected to move away from the surface of the pipe and to proceed by sliding. In such sliding movement, the
capsules will proceed around the pipe’s axis where maximum flow velocities occur, with a less rolling move-
ment. Studies on this physical mechanism are in progress.

Velocity ratio increased with increasing Re number. At the 1.2 · 104 < Re < 1.5 · 105 range and for all con-
centrations, average Rv was found to be 1.05 (Fig. 5). Fig. 5 can be interpreted that at all concentration values,
the more the Re number raises, the more the velocity ratios increase. The reason of this process is that when
the capsules reach high velocities, they tend to slide towards the pipe’s axis where the maximum velocity
occurs. As concentration increases, the capsules slide towards the axis at lower Re numbers. As the distances
between the capsules get shorter and as the Re number raises, the capsule flow resembles a homogenous flow.
It was observed in this experimental set-up that when the concentration values raise at higher Re number, an
event of jump (reaching the limit value) occurs, but the effect of this jump was not included in the graphics.

7. Empirical expression

Pressure drops occurring at different Re numbers and capsule concentrations were measured. After having
calculated the mean of the 1050 pressure drop values transferred to the computer, pressure gradients (DP/L)m

of the two-phase capsule train-water mixture flow were calculated. It was observed that due to the presence of
the solid phase, pressure gradient increased more at capsule flow than single phase (Fig. 6).
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At fixed concentrations (fixed number of capsules), the pressure gradient ratio decreases (getting closer to 1)
with increasing Re number (Fig. 7). The reason of this process is that as the flow velocity increases, the homog-
enous flow exerts an effect on the pressure gradient of the mixture which is higher than the rotational effect of
the capsules. Losses caused by the rotation of the capsules is proportional to the flow velocity. However, the
effect of the mixture flow at axial direction on pressure losses is directly proportional with the square of the
flow velocity. Therefore, the more the Re number increases, the less the capsules’ rotation contributes to
increase of pressure losses. At lower flow velocities, the increase of pressure drops due to rotation of the cap-
sules is more apparent.

The Darcy–Weisbach equation was taken as a basis for the expression based on experimental findings i.e.
empirical expression. The Re number was calculated for velocity Vb and was used for calculating the frictional
coefficient. Based on the results obtained from experiments conducted with water, the surfaces of the pipes
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were assumed smooth in hydraulic terms (Fig. 8). For smooth pipe, the Re number depending on velocity Vb

and k values (for pipe) were selected by using the Moody diagram.
Re ¼ V bD
t

ð20Þ

t ¼ lw=qw ð21Þ

kp ¼ f Re;
ep

D
¼ 0

� �
ðMoodyÞ ð22Þ
Since the surface area of the rolling spheres increases as concentration increases, it was assumed that the con-
centration expression influences pressure drop in the form of (1 + C)n.

The effect of shear stress diminishes as the d/D rate decreases in the rolling movement of the spheres inside
the pipe i.e. pressure drop decreases. The effect of diameter ratio on pressure drop was expressed as (1 + k)p.
Concluding that increases of d/D and of concentration are in proportion with the increase of pressure drop,
the Darcy–Weisbach expression was arranged as follows for experimental findings:
ðDP Þm ¼ kp

L
D

qm

V 2
b

2
ð1þ Cin situÞn 1þ d

D

� �p

ð23Þ
Forty pairs of equations with two variables were written to calculate the experimental constants n and p shown
in Eq. (23). Under the conditions 2.5 · 104 < Re < 1.5 · 105, it was calculated that n = 2.88 and p = �0.02.
ðDP Þm ¼ kp

L
D

qm

V 2
b

2
ð1þ Cin situÞ2:88 1þ d

D

� ��0:02

ð24Þ
It was observed that for 2.5 · 104 < Re < 1.5 · 105, the (DP)m values calculated by means of Eq. (24) (empirical
expression) are compatible with the (DP)m values measured experimentally with an average deviation by
3.37%.

8. Mathematical expression

Total pressure drop occurring in the flow of a mixture of capsule and water per unit length can be expressed
as the total value of the pressure drop caused by the flow of the single-phase mixture (homogenous flow) and
the pressure drop caused by the rolling movement of the spheres (Ulusarslan and Teke, 2006).
DP
L

� �
m

¼ DP
L

� �
hom:

þ DP
L

� �
c;rolling

ð25Þ
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Pressure drop occurring in the flow of a single phase mixture (homogenous flow) per unit length:
DP
L

� �
hom:

¼ kp

1

D
qm

V 2
b

2
ð26Þ
Pressure drop (DP)c,rolling caused by the rolling movement of capsules can be calculated with reference to the
force balances of a flow comprised of the rolling movement of a single capsule (Fig. 9). In this case the pressure
drop occurring due to the flow of a single capsule per unit length will be (DP/lc).
DP
L

� �
c;rolling

¼ DP
ðlcÞ

ð27Þ
It was assumed that the resultant force is applied from the center of the sphere and creates a rolling moment
against the contact point O. This moment will be balanced with a shear stress occurring at the opposite direc-
tion on the surface of a cylinder whose length equals to its diameter d. Considering the shear stress around the
sphere (sc) to be a constant, the moment balance in question can be expressed as follows:
DP
pd2

4

d
2
¼ sc4p

d
2

� �2 d
2

ð28Þ

DP ¼ 4sc ð29Þ
Assuming that the sphere rolls along the pipe without sliding and that the center of the sphere proceeds at an
average velocity, the shear stress occurring on the surface of the sphere can be calculated as follows with ref-
erence to the average space [(D � d)/2 = constant] between the pipe and the sphere:
sc ¼
lwV b

ðD� dÞ
2

ð30Þ
Adding Eqs. (29) and (30) into Eq. (27):
DP
L

� �
c;rolling

¼ 4sc

lc

¼ 4lwV b

ðD�dÞ
2
ðlcÞ

ð31Þ
If the units set forth in the denominator of the foregoing equation are expressed as in situ concentration (Eqs.
(17) and (18)) and diameter ratios, Eq. (31) will become as follows:
DP
L

� �
c;rolling

¼ 12lwV bCin situ

ð1� kÞ
D

d3
ð32Þ
Fig. 9. Distribution of forces on spherical capsule surface according to theoretical approach.
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Eq. (25) can be written as follows:
DP
L

� �
m

¼ DP
L

� �
hom:

1þ
DP
L

� �
c;rolling

DP
L

� �
hom:

" #
ð33Þ
Adding the expression (Eq. (32)) of the pressure drop occurring in the flow of the capsule in Eq. (33):
DP
L

� �
m

¼ kp

1

D
qm

V 2
b

2
1þ

12lwV bCin situ

ð1�kÞ
D
d3

kp
1
D qm

V 2
b

2

2
4

3
5 ð34Þ
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c;rolling
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¼ 24
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d
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ð35Þ
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Fig. 10. Comparison of pressure drop calculated through Eq. (44) with experimental findings.
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Eq. (34) can be simplified as necessary to calculate dimensionless numbers. Since it is as follows according to
Eq. (19):
qw

qm

¼ 1

1þ 2
3

d
D

� �2 d
lc
ðs� 1Þ

ð36Þ
Eq. (34) (mathematical expression) should be rearranged as follows.
DP
L

� �
m

¼ kp

1

D
qm

V 2
b

2
1þ 24

Cin situm

ð1� kÞk2d½1þ Cin situðs� 1Þ�kpV b

" #
ð37Þ

lc ¼
2d3

3D2

1

Cin situ

¼ 2

3
k2 d

Cin situ

ð38Þ
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A mathematical expression that characterizes the event can be written as follows by writing the expression lc
for in situ concentration and by making the necessary simplification.
DP
L

� �
m

¼ kp

1

D
qm

V 2
b

2
1þ 24

Cin situm

ð1� kÞk2½1þ Cin situðs� 1Þ�kpdV b

" #
ð39Þ
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¼ kp
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D
qm

V 2
b

2
1þ Y

Cin situkc

ð1� kÞk2½1þ Cin situðs� 1Þ�kp

" #
ð40Þ

1

Rec

¼ m
dV b

ð41Þ

kc ¼ f Rec;
ec

D
¼ 0

� �
ð42Þ
The second dimensionless term of Eq. (39) now contains the capsules’ Reynolds number. The capsules’ Re
number reflects as kc to the numerator, and kinematic viscosity (m) was considered to be lw/qw. kc represents
the friction loss caused by shear stress occurring around the capsules due to rotational movement. Its value
will change depending on the capsules’ rotational velocity. kp represents the friction loss caused by shear stres-
ses occurring on the pipe’s surface at axial direction while the mixture is flowing. Calculations were made by
considering kp = kc. Therefore Eq. (40) was used as follows.
DP
L

� �
m

¼ kp

1

D
qm

V 2
b

2
1þ !

Cin situ

ð1� kÞk2½1þ Cin situðs� 1Þ�

	 

ð43Þ
The first term on the right hand part of the equation indicates pressure drop occurring in the flow of single-
phase mixture; the second and dimensionless term indicates pressure drop occurring due to the rolling move-
ment of the capsules. The coefficient (Y) before the dimensionless term can be changed with reference to exper-
imental findings. Calculations made with reference to the conclusions arrived at in the theoretical approach
indicate that according to the experimental findings, the coefficient is 0.45 for capsule concentrations between
5% to and 30%. Comparison of the results calculated through Eq. (44) with the experimental findings revealed
a match with an average deviation by 2.7% for 2.5 · 104 < Re < 1.5 · 105 (min. deviation is 1.12%, max. devi-
ation is 5.31%) (Fig. 10).
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The curves drawn with reference to Eq. (44) and to the experimental findings were based on dimensionless
numbers (Fig. 11). The Froude number of the capsules was considered negligible; specific gravity, diameter
ratio, and relative roughness of pipes and capsules were considered constants.

Fig. 6 is a graphic made of experimental values only. The curves given in this graphic were completed by
using the mathematical model (Fig. 11). Fig. 11 is a graphic created by using Eq. (44) to calculate the pressure
drops which can occur until the Re number where a jump can occur are reached. After reaching a certain
velocity and concentration value, the flow regime will change. Therefore, no extrapolation should be made
for the Re > 1.5 · 105 values in Fig. 11 to calculate pressure drops.

9. Conclusion

Assuming the theoretical approach that ‘‘total pressure drop occurring in the flow of a mixture of capsule
and water per unit length equals the pressure drop caused by the flow of single-phase mixture (homogenous
flow) plus the pressure drop occurring due to the rolling movement of the spheres’’, a mathematical expression
was developed to characterize the physical event of the capsule and water mixture flow. The first term on the
right hand part of Eq. (44) indicates pressure drop occurring in the flow of single-phase mixture; the second
and dimensionless term indicates pressure drop occurring due to the rolling movement of the capsules. Com-
parison of the results calculated through Eq. (44) with the experimental findings reveals a match with an aver-
age deviation by 2.7% for 2.5 · 104 < Re < 1.5 · 105 (min. deviation is 1.12%, max. deviation is 5.31%).

Taking the Darcy–Weisbach equation as a basis, an empirical expression (experimental finding expression)
was developed (Eq. (24)). Pressure drops calculated by using the empirical expression for capsule flows under
different conditions (in the range 2.5 · 104 < Re < 1.5 · 105) deviate from the actual values by 3.37% on aver-
age (min. deviation 1.70%, max. deviation 4.96%).

The capsules will move towards the axis of the pipe when the flow velocity is Re > 1.5 · 105, pressure drops
occurring in the flow with capsules will increase lesser and get close to pressure drops incurring under homog-
enous flow conditions. When the capsules move exactly on the axis (i.e. when they flow), no rolling moments
will occur at all, so that pressure drops will equal to homogenous flow values. Therefore, it is inferred that the
pressure drop curves drawn for unit length by means of Eq. (44) should not be extrapolated after the velocity
value Re > 1.5 · 105.
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